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Abstract
We derive the low-frequency behavior of the scattering coefficients from a low-
pass structure which is periodic in a plane, and finite in the normal direction.
The analysis is for oblique incidence of arbitrary polarization on a structure
which can be anisotropic in both electric and magnetic material properties, and
may contain metal inclusions. The metal inclusions can be modeled both as
perfect electric conductors (PEC) and with a finite conductivity. It is found
that the low-frequency reflection and transmission coefficients are proportional
to the sum and difference of the electric and magnetic polarizabilities per unit
area of the periodic structure. If the metal inclusions are modeled as PEC
instead of as a finite conductivity, the first-order low-frequency reflection is
larger, whereas the first-order transmission is smaller.

PACS numbers: 41.20.−q, 41.20.Jb, 03.50.De

1. Introduction

Periodic structures are often used as spatial filters, or frequency selective surfaces. They are
typically either band pass or band stop. Band-pass structures usually consist of one or several
metal sheets with periodic arrays of apertures, whereas the band-stop structures are usually
periodic arrays of metal inclusions; in the case of one sheet, the two concepts can be considered
as complementary structures via Babinet’s principle.

In a series of papers, physical limitations on the amount of electromagnetic interaction
available for antennas, materials and general scatterers have been derived based solely on the
principles of linearity, causality and energy conservation [1–5]. There, it is demonstrated
that the low-frequency behavior of the structure under consideration provides a measure of
the total electromagnetic interaction available for all frequencies, much in the same spirit
as classical sum rules [6]. It is anticipated that the same kind of relations can be derived
for many kinds of periodic structures as well, which makes it interesting to take an explicit
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Figure 1. Typical geometry of the periodic structure.

look at low-frequency scattering for such structures. Some published results already exist for
electromagnetic absorbers consisting of a layered structure on a metal sheet [7], for artificial
magnetic ground planes [8] and for transmission at normal incidence through band-stop
structures [9]. The latter case is a direct application of the results in this paper, and shows
that the amount of electromagnetic power that can be blocked from transmission through a
band-stop screen is bounded by the static polarizability per unit area of the screen.

Passive periodic structures have been studied extensively. A full review is beyond the
scope of this paper, but we point out that many important low-frequency results for specific
geometries (typically metallic inclusions in vacuum) are available in the literature, see for
instance [10–12] and references therein. When the structures are embedded in a complex
material, possibly layered, more advanced Green’s functions can be used [13, 14] to extend
the results, at least in principle.

In this paper, we use an explicit analytical approach to identify the electric and magnetic
polarizabilities per unit area as the quantities of interest in section 3, and state the equations
which need to be solved in order to compute them in section 4. We limit ourselves to the
band-stop case, since this is the one most easily analyzed. The reason for this is that in the
static limit of band-stop structures, the tangential electric and magnetic fields are continuous.
In the band-pass case, the possibility of an interelement current in the metal sheets provides a
possibility for discontinuous tangential magnetic fields, which must be handled separately.

Our analysis is for oblique incidence with arbitrary polarization, and includes fully
anisotropic permittivities and permeabilities, as well as metal inclusions. As a result, the
first-order asymptotic reflection and transmission coefficients can be computed if the electric
and magnetic static polarizabilities per unit area are known. Since these polarizabilities are
calculated from a static problem, there exist variational principles that make it possible to give
bounds for the polarizabilities even for very complicated structures.

2. Notation

Let the periodic structure be situated between 0 < z < d, with periodicity described by two
basis vectors a1 and a2 in the xy plane as in figure 1. These are the sides of the unit cell U
with area A = ẑ · (a1 × a2). An arbitrary lattice vector is then described by

xn = n1a1 + n2a2, (1)

with n1 and n2 being integers. The material parameters are U-periodic, i.e. ε(x + xn) = ε(x)

and μ(x + xn) = μ(x) for all n = (n1, n2), where ε and μ are the permittivity and
permeability matrices, respectively. In the regions z < 0 and z > d we have ε(x) = ε0I and
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μ(x) = μ0I, where ε0 and μ0 are the permittivity and permeability of vacuum, respectively.
Let the incident field be a plane wave (time convention e−iωt )

Ei(x) = E0 eik·x, (2)

where the constant vector E0 is the polarization, and k is the wave vector of the incident wave.
The amplitude of the wave vector is |k| = k = ω/c, where c is the speed of light in vacuum.
The wave vector can be separated in one normal and one transverse part,

k = k⊥ + kzẑ,
|k⊥|
k

= sin θ,
kz

k
= cos θ, (3)

where θ is the angle of incidence and k⊥ is a vector in the xy plane.
In the surrounding air, the transverse components of the electric and magnetic fields in a

propagating plane wave are related by an impedance matrix Z:

E⊥ = ±Z(−ẑ × H⊥) ⇔ H⊥ = ±ẑ × Z−1E⊥, (4)

where the upper sign is for waves propagating in the positive z-direction, and the lower sign
is for waves propagating in the negative z-direction. The impedance matrix Z has eigenvalues
η0 cos θ (TM case) and η0/cos θ (TE case), where η0 = √

μ0/ε0 = 377� is the intrinsic
wave impedance in vacuum. When k⊥ �= 0, it can be given the explicit representation (where
k′

⊥ = ẑ × k⊥ is orthogonal to k⊥)

Z = η0 cos θ
k⊥k⊥
|k⊥|2 +

η0

cos θ

k′
⊥k′

⊥
|k′

⊥|2 , (5)

and for k⊥ = 0, corresponding to cos θ = 1, we have Z = η0I. We use here a dyadic notation,
where the action of the impedance matrix on an arbitrary transverse vector A is understood as
ZA = η0 cos θ k⊥(k⊥·A)

|k⊥|2 + η0

cos θ

k′
⊥(k′

⊥·A)

|k′
⊥|2 .

Due to the use of a plane wave as excitation and the periodicity of the structure, the fields
(including incident and scattered fields) satisfy the following translation property:

E(x + xn) = E(x) eik⊥·xn , (6)

where xn is an arbitrary lattice vector. This property implies that the field

Ẽ(x) = e−ik⊥·xE(x) (7)

is U-periodic in x. The periodic field Ẽ(x) is called the Bloch amplitude of the field E(x)

[15, 16].

3. Low-frequency behavior

Maxwell’s equations for time-harmonic fields are (where the possibly anisotropic matrices ε

and μ are the permittivity and permeability of the material, respectively)

∇ × E = iωμ(x)H (8)

∇ × H = −iωε(x)E. (9)

Multiplying these fields with the transverse phase factor of the incident field, e−ik⊥·x, we obtain
the equations for the Bloch amplitudes (using the identity e−ik⊥·x∇×E = (∇+ik⊥)×e−ik⊥·xE)

(∇ + ik⊥) × Ẽ = iωμH̃ (10)

(∇ + ik⊥) × H̃ = −iωεẼ. (11)
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Integrating over (x, y) ∈ U and z1 < z < z2, where z1 < 0 and z2 > d are chosen so that the
structure is enclosed, implies

ẑ ×
( ∫

U

Ẽ(z2) dS −
∫

U

Ẽ(z1) dS

)
=

∫ z2

z1

∫
U

(−ik⊥ × Ẽ + iωμH̃) dS dz (12)

ẑ ×
( ∫

U

H̃(z2) dS −
∫

U

H̃(z1) dS

)
=

∫ z2

z1

∫
U

(
−ik⊥ × H̃ − iωεẼ

)
dS dz. (13)

We use the following notation for the mean value of the fields (where h = z2 − z1)

Ē = 1

Ah

∫ z2

z1

∫
U

Ẽ dS dz Ē1,2 = 1

A

∫
U

Ẽ(z1,2) dS (14)

H̄ = 1

Ah

∫ z2

z1

∫
U

H̃ dS dz H̄1,2 = 1

A

∫
U

H̃(z1,2) dS. (15)

The following matrices γe and γm exist and are bounded as ω → 0, since they represent the
response of a linear system on an excitation E0 and H0 (see section 4 for computing the
matrices in the static limit and generalization to the case of metallic inclusions):∫ z2

z1

∫
U

(ε/ε0 − I)Ẽ dS dz
def= γeE0 (16)

∫ z2

z1

∫
U

(μ/μ0 − I)H̃ dS dz
def= γmH0. (17)

The equations are then

ẑ × (Ē2 − Ē1) = −ik⊥h × Ē + iωμ0hH̄ + iωμ0A
−1γmH0 (18)

ẑ × (H̄2 − H̄1) = −ik⊥h × H̄ − iωε0hĒ − iωε0A
−1γeE0, (19)

where the factor k⊥h is dimensionless, the factors iωμ0h and iωμ0A
−1γm have dimensions

of impedance, and the factors iωε0h and iωε0A
−1γe have dimensions of admittance.

Since the right-hand side of each of these equations is proportional to ω, this shows us
that in the static limit we have

lim
ω→0

ẑ × (Ē2 − Ē1) = 0 and lim
ω→0

ẑ × (H̄2 − H̄1) = 0, (20)

i.e. the static tangential fields are continuous across the structure. It is tempting to consider the
first two terms on the right-hand sides of (18) and (19) as due only to propagation in vacuum,
but as we show in the following they also contain a term contributing to the transmission and
reflection coefficients when considering oblique incidence.

3.1. Rewriting in transverse components

Since the left-hand sides of our equations are orthogonal to ẑ due to the cross product with ẑ,
the z-component of the right-hand sides must be zero,

0 = −ẑ · (ik⊥h × Ē⊥) + iωμ0hH̄z + iωμ0A
−1(γmH0)z (21)

0 = −ẑ · (ik⊥h × H̄⊥) − iωε0hĒz − iωε0A
−1(γeE0)z, (22)
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From this we extract the z components as

Ēz = −ẑ · (ik⊥ × H̄⊥)

iωε0
− (γeE0)z

Ah
= −ik′

⊥ · H̄⊥
iωε0

− (γeE0)z

Ah
(23)

H̄z = ẑ · (ik⊥ × Ē⊥)

iωμ0
− (γmH0)z

Ah
= ik′

⊥ · Ē⊥
iωμ0

− (γmH0)z

Ah
, (24)

where we used ẑ · (k⊥ × Ē⊥) = (ẑ × k⊥) · Ē⊥ = k′
⊥ · Ē⊥. Inserting this into the transverse

part of the equations implies

ẑ × (Ē2 − Ē1) = −ik⊥h × ẑĒz︸ ︷︷ ︸
=ik′

⊥hĒz

+iωμ0hH̄⊥ + iωμ0A
−1(γmH0)⊥

= k′
⊥k′

⊥
iωε0

h · H̄⊥ − ik′
⊥

(γeE0)z

A
+ iωμ0hH̄⊥ + iωμ0

(γmH0)⊥
A

(25)

and

ẑ × (H̄2 − H̄1) = −ik⊥h × ẑH̄z︸ ︷︷ ︸
=ik′

⊥hH̄z

−iωε0hĒ⊥ − iωε0A
−1(γeE0)⊥

= −k′
⊥k′

⊥
iωμ0

h · Ē⊥ − ik′
⊥

(γmH0)z

A
− iωε0hĒ⊥ − iωε0

(γeE0)⊥
A

. (26)

The terms proportional to (γeE0)z and (γmH0)z are the extra contributions due to oblique
incidence.

3.2. Reflection and transmission

Let t and r denote the transmission and reflection matrix, respectively, for the transverse electric
field with the reference plane z = 0, i.e. Et

⊥(z) = eikzztEi
⊥(0) and Er

⊥(z) = e−ikzzrEi
⊥(0).

When considering the low frequency limit, the reflection and transmission matrices are
expanded in a formal power series in ω as

r(ω) = r0 + ωr1 + · · · (27)

t(ω) = t0 + ωt1 + · · · . (28)

Since the static tangential fields are continuous across the structure according to (20), it is
immediately seen that r0 = 0 and t0 = I, as expected for a low-pass structure. In this paper,
we are only interested in terms up to r1 and t1, which means it is sufficient to keep only terms
up to first order in Ē1,2 and H̄1,2 (we use (4) to represent the transverse magnetic fields using
E0⊥ and suppress the expansion of r and t for brevity):

Ē1⊥ = (I + r + ikzz1I)E0⊥ H̄1⊥ = ẑ × Z−1(I − r + ikzz1I)E0⊥ (29)

Ē2⊥ = (t + ikzz2I)E0⊥ H̄2⊥ = ẑ × Z−1(t + ikzz2I)E0⊥ (30)

Ē⊥ = E0⊥ H̄⊥ = H0⊥ = ẑ × Z−1E0⊥ (31)

The fields Ē⊥ and H̄⊥ are expanded only to zeroth order, since in the equations they are
multiplied by factors proportional to ω. In order for Ē⊥ = E0⊥ and H̄⊥ = ẑ × Z−1E0⊥
to hold to zeroth order, we need to consider a limit process where h → ∞ and kh → 0
simultaneously. This may seem to invalidate expansions (27) and (28) since an extra scale is
introduced, but a deeper analysis shows the expansions are still valid.
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The incident field satisfies (set all polarizability matrices in (25) and (26) to zero and use
E1 = E0 eikzz1 ,E2 = E0 eikzz2 , etc, and expand to the first order)

(eikzz2 − eikzz1)ẑ × E0 = ikz(z2 − z1)ẑ × E0⊥ =
[
k′

⊥k′
⊥

iωε0
h + iωμ0hI

]
H0⊥ (32)

(eikzz2 − eikzz1)ẑ × H0 = ikz(z2 − z1)ẑ × H0⊥ = −
[
k′

⊥k′
⊥

iωμ0
h + iωε0hI

]
E0⊥. (33)

Subtracting this result from (25) and (26), and using expansions (29)–(31), we find (after
multiplying (25) by −ẑ× and (26) by −Z, and observing that −ẑ×k′

⊥ = −ẑ×(ẑ×k⊥) = k⊥,
as well as the relations k = ω

√
ε0μ0 and η0 = √

μ0/ε0)

(t − I − r)E0⊥ = −ik⊥
(γeE0)z

A
− ikη0ẑ × (γmH0)⊥

A
(34)

(t − I + r)E0⊥ = iZk′
⊥

(γmH0)z

A
+ ikη−1

0 Z
(γeE0)⊥

A
. (35)

We recall the fact that this equation is only valid asymptotically to the first order as k → 0.

3.3. Solving for the reflection and transmission matrices

To find explicit expressions for the transmission and reflection matrices, we must express all
the field components on the right-hand sides in E0⊥, so that this factor can be eliminated.
This can be done from the knowledge that the incident field is a plane wave in the surrounding
medium, which implies the following formulas:

E0z = −η0
k⊥ · Z−1E0⊥

k
(36)

H0⊥ = ẑ × Z−1E0⊥ (37)

H0z = η−1
0

k′
⊥ · E0⊥

k
. (38)

Making use of these representations and the decompositions

γe =
(

γe⊥⊥ γe⊥z

γez⊥ γezz

)
, and γm =

(
γm⊥⊥ γm⊥z

γmz⊥ γmzz

)
, (39)

we can write the various components of the dipole moments as

(γeE0)⊥ = γe⊥⊥E0⊥ − η0γe⊥z

k⊥
k

· Z−1E0⊥ (40)

(γeE0)z = γez⊥E0⊥ − η0γezz
k⊥
k

· Z−1E0⊥ (41)

(γmH0)⊥ = γm⊥⊥ẑ × Z−1E0⊥ + η−1
0 γm⊥z

k′
⊥
k

· E0⊥ (42)

(γmH0)z = γmz⊥ẑ × Z−1E0⊥ + η−1
0 γmzz

k′
⊥
k

· E0⊥. (43)
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Collecting all the results, we can write the transmission and reflection matrices as

t − I = ik

2

{
η−1

0 Z
[

γe⊥⊥
A

+
k′

⊥k′
⊥

k2

γmzz

A

]
+

[
−ẑ × γm⊥⊥

A
ẑ × +

k⊥k⊥
k2

γezz

A

]
Z−1η0

+ Z
[

k′
⊥
k

γmz⊥
A

− γe⊥z

A

k′
⊥
k

]
ẑ × Z−1 + ẑ ×

[
k′

⊥
k

γez⊥
A

− γm⊥z

A

k′
⊥
k

]}
(44)

r = ik

2

{
η−1

0 Z
[

γe⊥⊥
A

+
k′

⊥k′
⊥

k2

γmzz

A

]
−

[
−ẑ × γm⊥⊥

A
ẑ × +

k⊥k⊥
k2

γezz

A

]
Z−1η0

+ Z
[

k′
⊥
k

γmz⊥
A

− γe⊥z

A

k′
⊥
k

]
ẑ × Z−1 − ẑ ×

[
k′

⊥
k

γez⊥
A

− γm⊥z

A

k′
⊥
k

]}
. (45)

For normal incidence, where k⊥ = k′
⊥ = 0, the result simplifies to

t − I = ik

2

{γe⊥⊥
A

− ẑ × γm⊥⊥
A

ẑ×
}

(46)

r = ik

2

{γe⊥⊥
A

+ ẑ × γm⊥⊥
A

ẑ×
}

. (47)

Note that since the operation ẑ× can be identified with a skew-symmetric matrix which is
its own (negative) inverse, the matrix −ẑ × γm⊥⊥ẑ× = (ẑ×)−1γm⊥⊥ẑ× is a similarity
transform of γm⊥⊥. This demonstrates that the first-order correction to the static transmission
and reflection coefficients is given by the sum and difference of the electric and magnetic
polarizabilities per unit area of the structure, multiplied by ik/2. Note that the expressions
contain both co- and cross-polarization results.

Example: dielectric film. For a dielectric, nonmagnetic film we can compute both the
polarizability matrices and the transmission and reflection coefficients explicitly. The film
is contained in the region 0 < z < d, and has the isotropic permittivity ε = εrε0I and
vacuum permeability μ = μ0I. The magnetic polarizability is then γm = 0, and the electric
polarizability is

γe =
⎛
⎝γ1 0 0

0 γ1 0
0 0 γ2

⎞
⎠ , where

{
γ1 = (εr − 1)Ad

γ2 = (
1 − ε−1

r

)
Ad.

(48)

Should the film consist of several layers, the polarizabilities become γ1 = A
∑

n(εr,n − 1)dn

and γ2 = A
∑

n

(
1 − ε−1

r,n

)
dn, where εr,n and dn are the relative permittivity and thickness of

layer n, respectively. Expressions (44) and (45) are then

t − I = ik

2

{
η−1

0 Z
γe⊥⊥

A
+

k⊥k⊥
k2

γezz

A
Z−1η0

}

= ikd

2

{
cos θ

[
εr − 1 +

(
1 − ε−1

r

)
tan2 θ

] k⊥k⊥
|k⊥|2 +

εr − 1

cos θ

k′
⊥k′

⊥
|k′

⊥|2
}

(49)

r = ik

2

{
η−1

0 Z
γe⊥⊥

A
− k⊥k⊥

k2

γezz

A
Z−1η0

}

= ikd

2

{
cos θ

[
εr − 1 − (

1 − ε−1
r

)
tan2 θ

] k⊥k⊥
|k⊥|2 +

εr − 1

cos θ

k′
⊥k′

⊥
|k′

⊥|2
}

, (50)

which can be confirmed to be the proper low-frequency expansion of the transmission and
reflection coefficients for a dielectric film [17, p 65].
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4. Polarizability matrix

We now turn to the problem of computing the polarizability matrices γe and γm in the static
limit.

4.1. Finite material parameters with no conductivity

We use Stevenson’s method [18] to extract the low-frequency equations, as is traditional in
homogenization theory [19]. A formal expansion of the fields in a power series in ω, i.e.

Ẽ = Ẽ(0) + ωẼ(1) + · · · (51)

H̃ = H̃ (0) + ωH̃ (1) + · · · . (52)

and identifying similar powers of ω in the equations implies that Maxwell’s equations reduce
to the static equations for the zeroth-order fields (where the material parameters must be
understood as the static limit, i.e. ε(x) = limω→0 ε(x, ω) and μ(x) = limω→0 μ(x, ω))

∇ × Ẽ(0) = 0 ∇ · [εẼ(0)] = 0 (53)

∇ × H̃ (0) = 0 ∇ · [μH̃ (0)] = 0 (54)

with periodic boundary conditions in the xy plane. In the z-direction, we require that Ẽ(0) and
H̃ (0) go to constants E0 and H0 as z → ±∞. The zero-curl condition implies that

Ẽ(0) = E0 − ∇φe and H̃ (0) = H0 − ∇φm, (55)

where the potentials φe and φm are U-periodic functions in x and y with zero mean over U,
and ∇φe and ∇φm both decay to zero as z → ±∞ and are square integrable. Note that we
do not require φe and φm to be zero at infinity. That this cannot be the general case is seen
from a dielectric film subjected to a field in the z-direction. The discontinuous polarization
in the z-direction induces surface charges on the boundaries of the film, which in turn implies
a potential difference between the sides of the film. Thus, the potential cannot in general be
zero on both sides.

We can now summarize the low-frequency problem as two separate local problems in the
unit cell:

∇ · [ε(E0 − ∇φe)] = 0 (56)

∇ · [μ(H0 − ∇φm)] = 0 (57)

for prescribed constant fields E0 and H0. These are elliptic equations for the potentials φe and
φm, which are solvable with standard numerical methods such as the finite element method,
as long as these are implemented with the proper boundary conditions. The potentials depend
linearly on E0 and H0, which defines linear operators γe and γm according to the integrals∫ ∞

−∞

∫
U

(ε/ε0 − I)(E0 − ∇φe) dS dz
def= γeE0 (58)

∫ ∞

−∞

∫
U

(μ/μ0 − I)(H0 − ∇φm) dS dz
def= γmH0. (59)

These matrices are the polarizability matrices in the static limit, used in the preceding section.

8
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The polarizabilities can be defined as the minimum of an energy functional. It is shown
in [20] that if ε(x) � ε(x)′ for all x, the corresponding polarizabilities satisfy γe � γ ′

e. Even
though the derivation in [20] is for a single isotropic particle, the arguments are valid for an
anisotropic periodic setting as well as is seen in [21], and the corresponding result applies also
to γm. Thus, the polarizabilities are monotone in the material parameters. In addition, we
have the simple estimates [21]∫ ∞

−∞

∫
U

(I − ε−1ε0) dS dz � γe �
∫ ∞

−∞

∫
U

(ε/ε0 − I) dS dz (60)

∫ ∞

−∞

∫
U

(I − μ−1μ0) dS dz � γm �
∫ ∞

−∞

∫
U

(μ/μ0 − I) dS dz (61)

corresponding to the harmonic and arithmetic means of the material parameters. In classical
homogenization theory, the corresponding bounds are known as the Wiener bounds [22].

4.2. PEC inclusions

With some small modifications, the above reasoning applies also for metal inclusions in the
unit cell. Modeling the metal as a perfect electric conductor (PEC), the equations should then
be interpreted as being valid in the domain U × R\�, where � denotes the PEC region and
the boundary conditions n̂ × Ẽ(0) = 0 and n̂ · (μH̃ (0)) = 0 apply on ∂� [23, p 204]. This
corresponds to taking the limits ε → ∞ and μ → 0 in the PEC region.

We identify the γe and γm matrices as giving the total electric and magnetic dipole
moment, respectively. Their definitions are then replaced with (using that the surface charge
density is ρS = n̂ · (εẼ(0)) and the surface current density is JS = n̂ × H̃ (0))

γeE0
def=

∫
U×R\�

(ε/ε0 − I)Ẽ(0)dV +
∮

∂�

xn̂ · εẼ(0)

ε0
dS (62)

γmH0
def=

∫
U×R\�

(μ/μ0 − I)H̃ (0)dV +
1

2

∮
∂�

x × (n̂ × H̃ (0)) dS. (63)

It is shown in [24] that the magnetic polarizability γm for PEC bodies in vacuum is negative.
The electric and magnetic polarizabilities are monotone with the volume in the respect that
γe � γ ′

e and −γm � −γ ′
m if V � V ′, where V and V ′ are the corresponding volumes [25].

In [21] it is shown that these results apply also when the PEC body is surrounded by a fixed
anisotropic medium. Furthermore, we have the following estimates for PEC bodies in vacuum
[25]:

3V ′ � γe � 3V ′′ (64)

3V ′/2 � −γm � 3V ′′/2, (65)

where V ′ is the volume of the largest sphere contained in the body, and V ′′ is the volume of
the smallest sphere containing the body.

In the following subsection, we show that the last term in (63) is absent if the metal is
modeled with a finite conductivity instead of PEC.

4.3. Conducting inclusions

The conductivity case, where ε = ε′ + σ/(−iω), is fundamentally different since the electric
current has a zeroth-order term in the ω expansion due to

−iωεẼ = σẼ − iωε′Ẽ. (66)

9
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The formal expansions (51) and (52) then imply the following equations for the zeroth-order
fields:

∇ × Ẽ(0) = 0 ∇ · (σẼ(0)) = 0 (67)

∇ × H̃ (0) = σẼ(0) ∇ · (μH̃ (0)) = 0. (68)

Assuming σ �= 0 only inside the region � implies the boundary condition n̂ · (σẼ(0)) = 0 at
∂�. In simply connected regions � there can be no static current, which implies σẼ(0) = 0.
This can be seen in a more formal way by considering the quadratic form (using that
∇ × Ẽ(0) = 0 implies the representation Ẽ(0) = E0 − ∇φe in a simply connected region)∫

�

(E0 − ∇φe) · [σ(E0 − ∇φe)] dV = E0 ·
∫

�

σ(E0 − ∇φe) dV

+
∫

�

φe∇ · [σ(E0 − φe)] dV −
∮

∂�

φen̂ · [σ(E0 − φe)] dV. (69)

Each of the integrals on the right-hand side is zero: the first because the net static current
in a closed region must be zero1, the second because of the field equation ∇ · (σẼ(0)) = 0
and the third and last due to the boundary condition n̂ · (σẼ(0)) = 0. Since the integrand on
the left-hand side is non-negative, it must be zero almost everywhere, proving that the field
Ẽ(0) = E0 −∇ϕ = 0 in the inclusion geometry �. This means the equations for the magnetic
field reduce to ∇ × H̃ (0) = 0 and ∇ · (μH̃ (0)) = 0, i.e. the metal inclusions do not influence
the magnetic field.

To determine Ẽ(0) in regions where σ = 0, we need to consider equations further down
the chain,

∇ × Ẽ(1) = iμH̃ (0) (70)

∇ × H̃ (1) = −iεẼ(0) + σẼ1. (71)

Taking the divergence of the last equation, it is seen that in regions where σ = 0, i.e. outside
�, we necessarily have ∇ · (εẼ(0)) = 0. Since Ẽ(0) = 0 inside � and the tangential electric
field must be continuous, this implies the standard boundary condition n̂ × Ẽ(0) = 0 on ∂�.

To summarize, if the metallic inclusions are modeled with a finite conductivity, the electric
polarizability should be calculated just as in the PEC case, but the magnetic polarizability is
only due to variations in μ. The physical difference between the two models is that in the PEC
case, the low frequency limit is taken such that an infinitesimal skin depth is maintained in the
metallic particle, whereas in the conductivity case the limit is taken so that the skin depth is
much greater than the particle. From (46), we see that the first-order transmission coefficient
is the sum of electric and magnetic polarizabilities, and from (47) the first-order reflection
coefficient is the difference. Since the magnetic polarizability is negative for PEC bodies,
we conclude that the difference between the two models is that the first-order transmission is
smaller for the PEC model than for the conductivity model, whereas the first-order reflection
is larger for the PEC model than for the conductivity model.

1 Mathematically, this can be shown by considering the integral
∫
�

∇ · (x �J ) dV . Using the divergence theorem, we

have
∫
�

∇·(x �J ) dV = ∮
∂�

�̂n·(x �J ) dS = 0 due to the boundary condition �̂n· �J = 0. Using that ∇·(ϕ �J ) = ∇ϕ· �J +ϕ∇·�J
for any ϕ, the integral must also be

∫
�

Jx dV . Thus, all components of the current integrate to zero, and we have∫
�

�J dV = 0 for closed regions.
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5. Conclusions

In this paper, we have derived the first-order asymptotic behavior for the low-frequency
reflection and transmission coefficients of a low-pass periodic structure. The structure can be
anisotropic in both electric and magnetic properties, and the angle of incidence as well as the
polarization of the incoming wave is arbitrary. It is found that the low-frequency behavior
is proportional to the static electric and magnetic polarizability per unit area of the periodic
structure. The transmission coefficient is associated with the sum of the polarizabilities, and
the reflection coefficient with the difference.

The polarizabilities can be considered as minima of energy functionals, which provide
simple estimates in terms of easily calculated quantities associated with the harmonic and
arithmetic mean of the material parameters. When modeling the metal inclusions with a finite
conductivity instead of as PEC, the electric polarizability is unchanged, i.e. a specific dipole
moment can be identified for the metal body, whereas the magnetic polarizability only depends
on variations in permeability, with no specific contribution from the metal body.

The strong variational results for the static problem makes it possible to compute estimates
even for very complicated structures, and use these as bounds. It is anticipated that the results
of this paper can be used to formulate physical limitations on the amount of electromagnetic
interaction that is available from a structure with a finite thickness.
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